A water clock or clepsydra is any timepiece in which time is measured by the regulated flow of liquid into (inflow type) or out from (outflow type) a vessel where the amount is then measured.
Water clocks were among the earliest timekeepers that didn't depend on the observation of celestial bodies. Water clocks were used in ancient Babylon, Mesopotami, China, Korea, Egypt, Greece, India, Arabia, Muslim and civilizations.
Other Egyptian clepsydras were cylindrical or bowl-shaped containers designed to slowly fill with water coming in at a constant rate. Markings on the inside surfaces measured the passage of "hours" as the water level reached them. These clocks were used to determine hours at night, but may have been used in daylight as well. Another version consisted of a metal bowl with a hole in the bottom; when placed in a container of water the bowl would fill and sink in a certain time. These were still in use in North Africa this century. The need to track night hours lead to the invention of the water clock by 1500 BC, the Egyptians. This clock uses the steady dripping of water from a vessel to drive a mechanical device that tells the time. It was basically a bucket of water with a hole in the bottom. A water clock showed the passage of time but it didn't keep exact hours in a day. Egyptians were the people most likely to have invented them but the Greeks had the most advanced ones.
The historian Vitruvius reported that the ancient Egyptians used a clepsydra, a time mechanism using flowing water. Herodotus had mentioned an ancient Egyptian time-keeping device that was based on mercury. By the 9th century AD a mechanical timekeeper had been developed that lacked only an escapement mechanism.
The early clepsydras measured time by the water that dripped from one vessel into another, both being of identical volume
The oldest water clock of which there is physical evidence dates to c. 1417-1379 BC, during the reign of Amenhotep III where it was used in the Temple of Amen-Re at Karnak.[3] The oldest documentation of the water clock is the tomb inscription of the 16th century BC Egyptian court official Amenemhet, which identifies him as its inventor.[4][5] These simple water clocks, which were of the outflow type, were stone vessels with sloping sides that allowed water to drip at a nearly constant rate from a small hole near the bottom. There were twelve separate columns with consistently spaced markings on the inside to measure the passage of "hours" as the water level reached them. The columns were for each of the twelve months to allow for the variations of the seasonal hours. These clocks were used by priests to determine the time at night so that the temple rites and sacrifices could be performed at the correct hour.[6] These clocks may have been used in daylight as well.The bowl-shaped outflow is the simplest form of a water clock and is known to have existed in Babylon and in Egypt around the 16th century BC. Other regions of the world, including India and China, also have early evidence of water clocks, but the earliest dates are less certain. Some authors, however, claim that water clocks appeared in China as early as 4000 BC.[2]
n Babylon, water clocks were of the outflow type and were cylindrical in shape. Use of the water clock as an aid to astronomical calculations dates back to the Old Babylonian period (c. 2000 BC–c. 1600 BC).[7]
While there are no surviving water clocks from the Mesopotamian region, most evidence of their existence comes from writings on clay tablets. Two collections of tablets, for example, are the Enuma-Anu-Enlil (1600–1200 BC) and the MUL.APIN (7th century BC).[8] In these tablets, water clocks are used in reference to payment of the night and day watches (guards).
In China, as well as throughout eastern Asia, water clocks were very important in the study of astronomy and astrology. The oldest reference dates the use of the water-clock in China to the 6th century BC.[16] From about 200 BC onwards, the outflow clepsydra was replaced almost everywhere in China by the inflow type with an indicator-rod borne on a float.[16]
Huan Tan (40 BC–AD 30), a Secretary at the Court in charge of clepsydrae, wrote that he had to compare clepsydrae with sundials because of how temperature and humidity affected their accuracy, demonstrating that the effects of evaporation, as well as of temperature on the speed at which water flows, were known at this time.[17] In 976, Zhang Sixun addressed the problem of the water in clepsydrae freezing in cold weather by using liquid mercury instead.[18] Again, instead of using water, the early Ming Dynasty engineer Zhan Xiyuan (c. 1360-1380) created a sand-driven wheel clock, improved upon by Zhou Shuxue (c. 1530-1558).[19]
The use of clepsydrae to drive mechanisms illustrating astronomical phenomena began with Zhang Heng (78-139) in 117, who also employed a waterwheel.[20] Zhang Heng was the first in China to add an extra compensating tank between the reservoir and the inflow vessel, which solved the problem of the falling pressure head in the reservoir tank.[21] Zhang's ingenuity led to the creation by Yi Xing (683–727) and Liang Lingzan in 725 of a clock driven by a waterwheel linkwork escapement mechanism.[22] The same mechanism would be used by Su Song (1020-1101) in 1088 to power his astronomical clock tower, as well as a chain drive.[23] Su Song's clock tower, over 30 feet tall, possessed a bronze power-driven armillary sphere for observations, an automatically rotating celestial globe, and five front panels with doors that permitted the viewing of changing manikins which rang bells or gongs, and held tablets indicating the hour or other special times of the day.
Today, in Beijing's Drum Tower an outflow clepsydra is operational and displayed for tourists. It is connected to automata so that every quarter-hour a small brass statue of a man claps his cymbals.[24]
The Greeks, Romans further advanced water clock design to include the inflow clepsydra with an early feedback system, gearing, and escapement mechanism, which were connected to fanciful automata and resulted in improved accuracy. Further advances were made in Byzantium and particularly the Islamic world, where increasingly accurate water clocks incorporated complex segmental and epicyclic gearing, water wheels, and programmability, advances which eventually made their way to Europe. Independently, the Chinese developed their own advanced water clocks, incorporating gears, escapement mechanisms, and water wheels, passing their ideas on to Korea and Japan.
Some water clock designs were developed independently and some knowledge was transferred through the spread of trade. These early water clocks were calibrated with a sundial. While never reaching a level of accuracy comparable to today's standards of timekeeping, the water clock was the most accurate and commonly used timekeeping device for millennia, until it was replaced by more accurate pendulum clocks in 18th century Europe.
In Greece, a water clock was known as a clepsydra (water thief). The Greeks considerably advanced the water clock by tackling the problem of the diminishing flow. They introduced several types of the inflow clepsydra, one of which included the earliest feedback control system.[26] Ctesibius invented an indicator system typical for later clocks such as the dial and pointer.[27] The Roman engineer Vitruvius described early alarm clocks, working with gongs or trumpets.[27]
A commonly used water clock was the simple outflow clepsydra. This small earthenware vessel had a hole in its side near the base. In both Greek and Roman times, this type of clepsydra was used in courts for allocating periods of time to speakers. In important cases, when a person's life was at stake for example, it was filled. But, for more minor cases, it was only partially filled. If proceedings were interrupted for any reason, such as to examine documents, the hole in the clepsydra was stopped with wax until the speaker was able to resume his pleading.[28]
In the 4th century BC, the clepsydra is known to have been used as a stop-watch for imposing a time limit on clients' visits in Athenian brothels.[29] Slightly later, in the early 3rd century BC, the Hellenistic physician Herophilos employed a portable clepsydra on his house visits in Alexandria for measuring his patients' pulse-beats. By comparing the rate by age group with empirically obtained data sets, he was able to determine the intensity of the disorder.[29]
Between 270 BC and 500 AD, Hellenistic (Ctesibius, Hero of Alexandria, Archimedes) and Roman horologists and astronomers were developing more elaborate mechanized water clocks. The added complexity was aimed at regulating the flow and at providing fancier displays of the passage of time. For example, some water clocks rang bells and gongs, while others opened doors and windows to show figurines of people, or moved pointers, and dials. Some even displayed astrological models of the universe. The 3rd century BC engineer Philo of Byzantium referred in his works to water clocks already fitted with an escapement mechanism, the earliest known of its kind.[30]
The biggest achievement of the invention of clepsydrae during this time, however, was by Ctesibius with his incorporation of gears and a dial indicator to automatically show the time as the lengths of the days changed throughout the year, because of the temporal timekeeping used during his day.
Also, a Greek astronomer, Andronicus of Cyrrhus, supervised the construction of his Horologion, known today as the Tower of the Winds, in the Athens marketplace (or agora) in the first half of the 1st century BC. This octagonal clocktower showed scholars and shoppers both sundials and mechanical hour indicators. It featured a 24-hour mechanized clepsydra and indicators for the eight winds from which the tower got its name, and it displayed the seasons of the year and astrological dates and periods.
Water clocks were among the earliest timekeepers that didn't depend on the observation of celestial bodies. Water clocks were used in ancient Babylon, Mesopotami, China, Korea, Egypt, Greece, India, Arabia, Muslim and civilizations.
Other Egyptian clepsydras were cylindrical or bowl-shaped containers designed to slowly fill with water coming in at a constant rate. Markings on the inside surfaces measured the passage of "hours" as the water level reached them. These clocks were used to determine hours at night, but may have been used in daylight as well. Another version consisted of a metal bowl with a hole in the bottom; when placed in a container of water the bowl would fill and sink in a certain time. These were still in use in North Africa this century. The need to track night hours lead to the invention of the water clock by 1500 BC, the Egyptians. This clock uses the steady dripping of water from a vessel to drive a mechanical device that tells the time. It was basically a bucket of water with a hole in the bottom. A water clock showed the passage of time but it didn't keep exact hours in a day. Egyptians were the people most likely to have invented them but the Greeks had the most advanced ones.
The historian Vitruvius reported that the ancient Egyptians used a clepsydra, a time mechanism using flowing water. Herodotus had mentioned an ancient Egyptian time-keeping device that was based on mercury. By the 9th century AD a mechanical timekeeper had been developed that lacked only an escapement mechanism.
One of the oldest water clocks was found in the tomb of Amenhotep I, buried around 1500 B.C.
-
Later they were named clepsydras ('water thief') by the Greeks, who began using them about 325 B.C. These were stone vessels with sloping sides that allowed water to drip at a nearly constant rate from a small hole near the bottom.
The early clepsydras measured time by the water that dripped from one vessel into another, both being of identical volume
The oldest water clock of which there is physical evidence dates to c. 1417-1379 BC, during the reign of Amenhotep III where it was used in the Temple of Amen-Re at Karnak.[3] The oldest documentation of the water clock is the tomb inscription of the 16th century BC Egyptian court official Amenemhet, which identifies him as its inventor.[4][5] These simple water clocks, which were of the outflow type, were stone vessels with sloping sides that allowed water to drip at a nearly constant rate from a small hole near the bottom. There were twelve separate columns with consistently spaced markings on the inside to measure the passage of "hours" as the water level reached them. The columns were for each of the twelve months to allow for the variations of the seasonal hours. These clocks were used by priests to determine the time at night so that the temple rites and sacrifices could be performed at the correct hour.[6] These clocks may have been used in daylight as well.The bowl-shaped outflow is the simplest form of a water clock and is known to have existed in Babylon and in Egypt around the 16th century BC. Other regions of the world, including India and China, also have early evidence of water clocks, but the earliest dates are less certain. Some authors, however, claim that water clocks appeared in China as early as 4000 BC.[2]
n Babylon, water clocks were of the outflow type and were cylindrical in shape. Use of the water clock as an aid to astronomical calculations dates back to the Old Babylonian period (c. 2000 BC–c. 1600 BC).[7]
While there are no surviving water clocks from the Mesopotamian region, most evidence of their existence comes from writings on clay tablets. Two collections of tablets, for example, are the Enuma-Anu-Enlil (1600–1200 BC) and the MUL.APIN (7th century BC).[8] In these tablets, water clocks are used in reference to payment of the night and day watches (guards).
In China, as well as throughout eastern Asia, water clocks were very important in the study of astronomy and astrology. The oldest reference dates the use of the water-clock in China to the 6th century BC.[16] From about 200 BC onwards, the outflow clepsydra was replaced almost everywhere in China by the inflow type with an indicator-rod borne on a float.[16]
Huan Tan (40 BC–AD 30), a Secretary at the Court in charge of clepsydrae, wrote that he had to compare clepsydrae with sundials because of how temperature and humidity affected their accuracy, demonstrating that the effects of evaporation, as well as of temperature on the speed at which water flows, were known at this time.[17] In 976, Zhang Sixun addressed the problem of the water in clepsydrae freezing in cold weather by using liquid mercury instead.[18] Again, instead of using water, the early Ming Dynasty engineer Zhan Xiyuan (c. 1360-1380) created a sand-driven wheel clock, improved upon by Zhou Shuxue (c. 1530-1558).[19]
The use of clepsydrae to drive mechanisms illustrating astronomical phenomena began with Zhang Heng (78-139) in 117, who also employed a waterwheel.[20] Zhang Heng was the first in China to add an extra compensating tank between the reservoir and the inflow vessel, which solved the problem of the falling pressure head in the reservoir tank.[21] Zhang's ingenuity led to the creation by Yi Xing (683–727) and Liang Lingzan in 725 of a clock driven by a waterwheel linkwork escapement mechanism.[22] The same mechanism would be used by Su Song (1020-1101) in 1088 to power his astronomical clock tower, as well as a chain drive.[23] Su Song's clock tower, over 30 feet tall, possessed a bronze power-driven armillary sphere for observations, an automatically rotating celestial globe, and five front panels with doors that permitted the viewing of changing manikins which rang bells or gongs, and held tablets indicating the hour or other special times of the day.
Today, in Beijing's Drum Tower an outflow clepsydra is operational and displayed for tourists. It is connected to automata so that every quarter-hour a small brass statue of a man claps his cymbals.[24]
The Greeks, Romans further advanced water clock design to include the inflow clepsydra with an early feedback system, gearing, and escapement mechanism, which were connected to fanciful automata and resulted in improved accuracy. Further advances were made in Byzantium and particularly the Islamic world, where increasingly accurate water clocks incorporated complex segmental and epicyclic gearing, water wheels, and programmability, advances which eventually made their way to Europe. Independently, the Chinese developed their own advanced water clocks, incorporating gears, escapement mechanisms, and water wheels, passing their ideas on to Korea and Japan.
Some water clock designs were developed independently and some knowledge was transferred through the spread of trade. These early water clocks were calibrated with a sundial. While never reaching a level of accuracy comparable to today's standards of timekeeping, the water clock was the most accurate and commonly used timekeeping device for millennia, until it was replaced by more accurate pendulum clocks in 18th century Europe.
In Greece, a water clock was known as a clepsydra (water thief). The Greeks considerably advanced the water clock by tackling the problem of the diminishing flow. They introduced several types of the inflow clepsydra, one of which included the earliest feedback control system.[26] Ctesibius invented an indicator system typical for later clocks such as the dial and pointer.[27] The Roman engineer Vitruvius described early alarm clocks, working with gongs or trumpets.[27]
A commonly used water clock was the simple outflow clepsydra. This small earthenware vessel had a hole in its side near the base. In both Greek and Roman times, this type of clepsydra was used in courts for allocating periods of time to speakers. In important cases, when a person's life was at stake for example, it was filled. But, for more minor cases, it was only partially filled. If proceedings were interrupted for any reason, such as to examine documents, the hole in the clepsydra was stopped with wax until the speaker was able to resume his pleading.[28]
In the 4th century BC, the clepsydra is known to have been used as a stop-watch for imposing a time limit on clients' visits in Athenian brothels.[29] Slightly later, in the early 3rd century BC, the Hellenistic physician Herophilos employed a portable clepsydra on his house visits in Alexandria for measuring his patients' pulse-beats. By comparing the rate by age group with empirically obtained data sets, he was able to determine the intensity of the disorder.[29]
Between 270 BC and 500 AD, Hellenistic (Ctesibius, Hero of Alexandria, Archimedes) and Roman horologists and astronomers were developing more elaborate mechanized water clocks. The added complexity was aimed at regulating the flow and at providing fancier displays of the passage of time. For example, some water clocks rang bells and gongs, while others opened doors and windows to show figurines of people, or moved pointers, and dials. Some even displayed astrological models of the universe. The 3rd century BC engineer Philo of Byzantium referred in his works to water clocks already fitted with an escapement mechanism, the earliest known of its kind.[30]
The biggest achievement of the invention of clepsydrae during this time, however, was by Ctesibius with his incorporation of gears and a dial indicator to automatically show the time as the lengths of the days changed throughout the year, because of the temporal timekeeping used during his day.
Also, a Greek astronomer, Andronicus of Cyrrhus, supervised the construction of his Horologion, known today as the Tower of the Winds, in the Athens marketplace (or agora) in the first half of the 1st century BC. This octagonal clocktower showed scholars and shoppers both sundials and mechanical hour indicators. It featured a 24-hour mechanized clepsydra and indicators for the eight winds from which the tower got its name, and it displayed the seasons of the year and astrological dates and periods.